加入收藏 网站地图 本站接受网友投稿,请将文章发送至tiancaijiajiao@gmail.com
您现在的位置:首页 >> 初中学习 >> 中考 >> 内容

中考数字归纳猜想和图形归纳猜想两类解题方法

时间:2016-7-16 14:54:02

归纳猜想型问题主要分为数字归纳猜想和图形归纳猜想两类,要求同学们在观察、实验、归纳、类比等基础上大胆猜想,得出结论,并能对自己的猜想加以验证.同学们解题时要善于从所提供的数字或图形信息中,寻找共同之处,这个存在于个例中的共性,就是规律.其解题思维过程是:从特殊情况入手→探索发现规律→综合归纳→猜想得出结论→验证结论.由于归纳猜想本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,这类问题不但能培养同学们分析、归纳、解决问题的能力,也有利于培养同学们思维的深刻性和创造性,是目前中考的一大热点,此类题目一般难度不大,题型以选择题和填空题为主,分值在5分左右. 
  例1 (2015·淮安)将连续正整数按如下规律排列: 


  若正整数565位于第a行,第b列,则a+b=______. 
  【分析】根据题意可知每行都有4个数,所以用565除以4,根据商和余数的情况判断出正整数565位于第几行;然后根据奇数行的数字在前四列,数字逐渐增加;偶数行的数字在后四列,数字逐渐减小,判断出565在第几列. 


  【解答】∵565÷4=141…1, 
  ∴正整数565位于第142行,即a=142. 
  ∵奇数行的数字在前四列,数字逐渐增加;偶数行的数字在后四列,数字逐渐减小, 


  ∴正整数565位于第五列,即b=5, 
  ∴a+b=142+5=147. 
  【点评】此题主要考查了探索数列规律问题,注意观察总结出规律,并能正确地应用规律, 
  例2 (2015·徐州)如图1,正方形ABCD的边长为1,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为_______.


  【分析】首先求出AC、AE、AG的长度,然后猜测命题中的数学规律,即可解决问题. 
  【解答】根据正方形的性质,知: 


  【点评】此题主要考查探索图形变化规律的问题,需要结合正方形的性质、勾股定理及其应用,归纳得出正方形边长的变化规律. 
  例3 (2015·盐城)设△ABC的面积为1,如图2(1)将边BC、AC分别2等分,BE1、AD1交于点O,△AOB的面积记为S1;如图2(2)将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;……;依此类推,则Sn可表示为______.(用含n的代数式表示,其中n为正整数) 
  【点评】此题考查的知识点是相似三角形的判定与性质、平行线分线段成比例定理、三角形的面积,解题关键是根据题意作出辅助线,得出相似三角形. 
  例4 (2015·衢州)已知,正六边形ABCDEF在直角坐标系的位置如图4所示,A(-2,0),点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2015次翻转之后,点B的坐标是______. 
  【分析】每6次翻转为一个循环组循环,用2015除以6,根据商和余数的情况确定点B的位置,然后求出翻转前进的距离,过点B作BG⊥x轴于G,求出∠BAG=60°,然后求出AG、BG,再求出OG,最后写出点B的坐标即可. 


  【解答】因为正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,所以每6次翻转为一个循环组循环,因为2015÷6=335余5,所以经过2015次翻转为第336循环组的第5次翻转,点B处于在开始时点C的位置,如图5.因为A(-2,0),所以AB=2,所以翻转前进的距离为2×2015=4030.过点B作BG⊥x轴于G,则 
  【点评】本题考查了坐标与图形变化,正六边形的性质,确定出最后点B所在的位置是解题的关键,难点在于作辅助线构造出直角三角形.

作者:不详 来源:网友发布
南京家教 南京家教中心 南京英语家教 南京数学家教 南京钢琴家教 南京在职老师家教 南京考研
  • 南京天才家教-南京家教第一品牌!(www.tc930.com) © 2018 版权所有 All Rights Reserved.
  • 皖ICP备10205810号-1